[1]
S. Lee, Y. Sankai, Power assist control for walking aid with HAL-3 based on EMG and impedance adjustment around knee joints. Proceedings of the 2002 IEEE/RSJ Int. Conference on Intelligent Robotics and Systems, 2002, pp.1499-1504.
DOI: 10.1109/irds.2002.1043967
Google Scholar
[2]
A. Chu, H. Kazerooni, A. Zoss, On the biomimetic design of the Berkley Lower Extremity Exoskeleton (BLEEX)", Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, April, 2005, pp.4356-4363.
DOI: 10.1109/robot.2005.1570789
Google Scholar
[3]
D.P. Ferris, G.S. Sawicki, A.R. Domingo, Powered lower limb orthoses for gait rehabilitation. Top Spinal Cord Inj. Rehabil., 2005; 11(3), pp.34-39.
DOI: 10.1310/6gl4-um7x-519h-9jyd
Google Scholar
[4]
J.F. Veneman, R. Ekkelenkamp, R. Kruidhof, F.C.T. van der Helm, H. van der Kooij. A Series Elastic and Bowden-cable-based actuation system for use as torque-actuator in exoskeleton-type robots. The International Journal of Robotics Research, 25(3), pp.261-281.
DOI: 10.1177/0278364906063829
Google Scholar
[5]
Yamaguchi, G. T. and Zajac, F. E. Restoring unassisted natural gait to paraplegic via functional neuromuscular stimulation: a computer simulation study. IEEE Trans. Biomed. Engng, 1990, 37, 886–902.
DOI: 10.1109/10.58599
Google Scholar
[6]
Anderson, F. C. and Pandy, M. G. A dynamic optimization solution for vertical jumping in three dimensions. Comput. Meth. Biomech. Biomed. Engng, 1999, 2, 201–231.
Google Scholar
[7]
Delp, S. L., Loan, J. P., Hoy, M. G., Zajac, F. E., Topp, E. L., and Rosen, J. M. An interactive graphics-based model of the lower extremity to study orthopedic surgical procedures. IEEE Trans. Biomed. Engng, 1990, 37(8), 757–767.
DOI: 10.1109/10.102791
Google Scholar
[8]
Davy, D. T. and Audu, M. L. A dynamic optimization technique for predicting muscle forces in the swing phase of gait. J. Biomechanics, 1987, 20, 187–201.
DOI: 10.1016/0021-9290(87)90310-1
Google Scholar
[9]
Alkjaer, T., Simonsen, E. B., and Dyhre-Poulsen, P. Comparison of inverse dynamics calculated by two- and three-dimensional models during walking. Gait Posture, 2001, 13, 73–77.
DOI: 10.1016/s0966-6362(00)00099-0
Google Scholar
[10]
Janice, J. and Winter, D. A. Kinetic analysis of the lower limbs during walking: what information can be gained from a three-dimensional model? J. Biomechanics, 1995, 28(6), 753–758.
DOI: 10.1016/0021-9290(94)00124-m
Google Scholar
[11]
A. Selk Ghafari, A. Meghdari, G.R. Vossoughi. Estimation of the human lower extremity musculoskeletal conditions during backpack load carrying. Journal of Scientia Iranica, 2009, 16(5): 451-462.
Google Scholar
[12]
Harman, E., Han, K., Frykman, P., and Pandorf, C. The effects of backpack weight on the biomechanics of load carriage, USARIEM technical report, Natick, Massachusetts, 2000, pp. T100–117.
DOI: 10.21236/ada377886
Google Scholar
[13]
Riener, R., Rabuffetti, M., and Frigo, C. Stair ascent and descent at different inclinations. Gait Postures, 2002, 15, 32–44.
DOI: 10.1016/s0966-6362(01)00162-x
Google Scholar
[14]
Thelen, D. G., Anderson, F. C., and Delp, S. L. Generating dynamic simulations of movement using computed muscle control. J. Biomechanics, 2003, 36, 321–328.
DOI: 10.1016/s0021-9290(02)00432-3
Google Scholar
[15]
Praagman, M., Chadwick, E. K., van der Helm, F. C., and Veeger, H. E. The relationship between two different mechanical cost function and muscle oxygen consumption. J. Biomechanics, 2006, 39, 758–765.
DOI: 10.1016/j.jbiomech.2004.11.034
Google Scholar
[16]
A. Selk Ghafari, A. Meghdari, G.R. Vossoughi. Biomechanical analysis for the study of muscle contributions to support during load carrying. Journal of Mechanical Engineering Science, 2010, 224(6): 1287-1298.
DOI: 10.1243/09544062jmes1559
Google Scholar
[17]
A. Selk Ghafari, A. Meghdari, G.R. Vossoughi. Muscle-driven dynamics simulation for the study of differences in muscle function during stair ascent and descent. Journal of Engineering in Medicine, 2009, 223(7): 863-874.
DOI: 10.1243/09544119jeim578
Google Scholar